
G. CASCARANO etal. 283 

time (4-7) are needed to estimate 3000 triplets selected 
.by P~o on an IBM 370/158 machine when k is allowed 
to vary over the largest 70 I El's. 

7. Conclusions 

The illustrative examples computed by (8) and (10) 
indicate that these formulas can provide more useful 
phase information than /'3. The information is of 
varied sort. 

The triplets estimated positive by P~o, ranked in a 
new order of accuracy, define a new convergence map 
and can actively be used in the tangent procedures. 
It should also be stressed that the integration of our 
formulas with the random approaches of phases 
(Declercq, Germain & Woolfson, 1979) is very easy 
and can facilitate the convergence from random 
phases to the correct solution. 

The triplets whose cosines are estimated negative 
by P~o often are not sufficiently accurate to be actively 
used in tangent procedures. However, they can be 
successfully exploited as a powerful figure of merit 
for finding out the correct solution in multisolution 
procedures (Camalli et al., 1984). We stress the point 
that such a figure of merit is statistically independent 
of that using negative quartets. 
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Abstract 

The problem of calculating the two-wave X-ray field 
on the basis of the Takagi-Taupin equations is dis- 
cussed for the general case of curved lattice planes. 
A two-dimensional integral equation which incorpor- 
ates the nature of the incoming radiation, the form 
of the crystal/vacuum boundary, and the curvature 
of the structure, is deduced. Analytical solutions for 
the symmetrical Laue case with incoming plane waves 
are obtained directly for perfect crystals by means of 
iteration. The same method permits a simple deriva- 
tion of the narrow-wave Laue and Bragg cases. Modu- 
lated wave fronts are discussed, and it is shown that 
a cut-off in the width of an incoming plane wave 
leads to lateral oscillations which are superimposed 
on the Pendelliisung fringes. Bragg and Laue shadow 

0108-7673/84/030283-09501.50 

fields are obtained. The influence of a non-zero kernel 
is discussed and a numerical procedure for calculat- 
ing wave amplitudes in curved crystals is presented. 

1. Introduction 

One important problem in the theory of X-ray diffrac- 
tion is to describe wave propagation in general three- 
dimensional structures which are not crystalline in 
the traditional sense. It is well known that the Takagi- 
Taupin method (Takagi, 1969; Taupin, 1964) permits 
the dynamical X-ray wave-field in both perfect and 
slightly imperfect crystals to be calculated. A more 
general way of handling the same problem for statisti- 
cally distributed defects has recently been put forward 
by Kato (1980). A variety of situations exists, however, 
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284 CALCULATED TWO-WAVE X-RAY FIELD 

for which the simpler Takagi-Taupin equations are 
sufficient. Such a case is, for instance, met with in 
X-ray optics and spectrometry when a crystal is given 
a well-defined shape through bending with sub- 
sequent grinding or etching (Kushnir & Suvorov, 
1982; Bremer & S0rum, 1980; S0rum & Bremer, 1980). 
Precise atomic displacements may be induced also 
by means of surface films, thermal gradients and 
dislocations. A limited number of models have been 
studied analytically by various authors, mainly by 
means of Riemann-function methods. Takagi's 
original differential equations have for that purpose 
been transformed into uncoupled partial differential 
equations. The effect of a single stacking fault in a 
perfect crystal has been calculated by Authier & 
Simon (1968). The exact solution for structures that 
arise from constant strain gradients has been given 
by Katagawa & Kato (1974), Litzman & Janfi~ek 
(1974) and Chukhovskii (1974; Chukhovskii & 
Petrashen, 1977). 

The interaction strength between X-ray photons 
and crystalline electrons may conveniently be 
expresssed by means of the complex extinction para- 
meter rh = A/(XhC),  where A is the wavelength, C is 
the polarization factor and Xh is the hth Fourier 
component of the high-frequency susceptibility. 
Numerical methods (Epelboin, 1977; Nourtier & Tau- 
pin, 1981) that are based on approximating the field 
derivatives by means of finite differences per step 
length work very well when the steps are much smaller 
than Re (~'h). For most crystals Re (7"h)l is typically 
of order 10U102 ixm. Such parameters as bending 
radii, crystal thicknesses and wave-front widths are 
also of macroscopical dimensions and it appears use- 
ful to work out iteration procedures where the 
expansion parameter somehow depends on these 
length scales. The reason is that a systematic 
expansion may make it easier to introduce sensible 
approximation in both numerical and analytical work. 
The aim of the present paper is to discuss and work 
out iteration procedures entirely in terms of integral- 
equation theory. It will also be shown through some 
examples that the standard dynamical theory of per- 
fect crystals may be obtained in a very simple way. 

2. Integral-equation formulation 

The solution of the two-wave case will be based on 
the assumption that each polarization component of 
the electric field amplitude D at an arbitrary position 
r inside the crystals can be written as the eikonal-like 
s u m  

D(r) = Do(r) exp ( -  27rikor) + D h (r) exp ( -  27rikh r), 

(1) 

where ko and kh(Ik01 = Ikh[ = l / X  = k) refer to the wave 
vector of the transmitted and ditiracted wave, respec- 

tively (Fig. 1). The components of the field fulfil 
Maxwell 's equations when (Takagi, 1969; Taupin, 
1964) 

ODo 
- --i~7"h I exp (-2zrihu)Dh, (2) 

OSo 

ODh -i 
- -  i7r7" h exp (27rihu)Do-2zrik AO sin 20Dh, 

OSh 
(3) 

with/tO as the deviation from the exact Bragg angle. 
Polarization effects are included in the definition of 
rh and r j;. The oblique coordinates So and Sh are 
defined in Fig. 1 and the atomic displacement vector 
u = U(So, Sh) together with/tO are given relative to the 
unstrained crystal. In what follows, effects due to 
refraction, average absorption and unsymmetrical ray 
paths will be excluded. The transformations 

Do-> Do exp (27rik AO sin 2 0 S h ) ,  (4) 

O h -> D h exp (27rik AO sin 20Sh) (5) 

allow (2) and (3) to be rewritten in the symmetrical 
form 

ODo 
- iTrzh I exp (-27rihu)Dh, (6) 

OSo 

0 Dh _ _ iTrrh i exp (27rihu)Do. (7) 
OSh 

Without loss of generality it is now assumed that a 
natural boundary with coordinates (ro, rh) exists at 
which Dh(ro, rh) is zero while Do(r0, rh) is known. In 
the Laue case, for instance, an obvious choice will 
be the entrance surface of the crystal, as schematically 
depicted in Fig. 1. Both phase and amplitude of 
Do(ro, rh) may vary. At an arbitrary point P inside 
the semi-infinite crystal the ti'ansmitted field is 
obtained by formally integrating (6) and (7) over the 

A , B 

p 

Fig. 1. Area of integration for calculating the amplitude of the 
transmitted wave in the Laue case. The origin is located at O, 
and the vectors ko and kh are parallel to AP and BP, respectively. 
The unit vectors of the coordinate system are defined by So = 
ko/ikol and sh = kJIkhl. 
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variables s~ and s~,, respectively. The starting points 
for the two line integrals will be the points A and B' 
whose coordinates are specified by ro = ro(Sh) and 
r'h = r'h(S~). When combining the equations and solv- 
ing for Do we get 

Do(So, Sh) = Do[ro(Sh), Sh]-- a -2 
s o s h 

X ~ ~ K(Sh; S~, S'h)Do(S~, S'h) ds'o dS'h. ( 8 )  
ro r~ 

The parameter a = (ZhZe)~/2/zr has the dimension of 
a length and will in what follows play the role of an 
expansion parameter. Equation (8) is qualitatively a 
two-dimensional integral equation of the Volterra 
type. The phase change resulting from the curved 
lattice planes is expressed by means of the unsym- 
metrical kernel 

K(Sh ; S~, S~):exp {27rih[u(s~, s~,)-u(s~, Sh)]}. (9) 

This way of calculating the field combines in a single 
compact expression (8) the three factors which are 
responsible for the amplitude inside the crystal: (i) 
the character of the incoming radiation; (ii) the shape 
of the boundary; (iii) the position of the atoms relative 
to the unperturbed lattice. The area of validity is the 
same as for the original Takagi-Taupin equations. 

According to (8) the field Do at P is given by a 
phase-modulated integration over Do itself inside the 
area ABP. If the distance from the boundary A B  is 
much less than the extinction length, it is permissible 
to replace D0(s~, s~,) with Do(ro(Sh) , Sh]. By repeating 
this procedure it is easy to obtain numerical data for 
arbitrary boundary conditions and (small) atomic dis- 
placements. Equation (8) can also be solved (Kanwal, 
1971) analytically by replacing Do(s~, s~,) inside the 
double integral with the zeroth-order expansion 
D(0 °)= Do[ro(Sh), Sh] and expanding the amplitude in 
terms of (a-E) n. In doing this we will vary conditions 
(i) and (iii) above while limiting (ii) to include plane 
surfaces of semi-infinite crystals. Clearly, since it is 
the field at the boundary which determines the 
intensity inside the crystal both the numerical and 
analytical iteration method will be in agreement with 
Kirchoff's integral relation. Integral-equation 
methods have previously been used in dynamical and 
kinemathical diffraction theory by Afanas'ev & Kohn 
(1971) and Werner (1974). 

3. S o l u t i o n s  for perfect  crystals  

(a) Direct solution for incoming plane wave 

In a perfect crystal the displacement u = 0, and the 
kernel (9) becomes equal to unity. In order to illustrate 
the use of (8) we now solve directly the Laue case for 
a plane wave entering a crystal through a plane sur- 
face. It is convenient to change to Cartesian coordin- 

ates defined by 

x = (Sh -- So) sin 0, (10) 

y =(Sh +So) COS 0. (11) 

The Jacobian is simply equal to (sin 2 0) -I. With D(o e) 
as the constant amplitude for the external vacuum 
wave, the value for Do at the boundary is given by 

Do[ro(Sh) , Sh] ~- D¢o e) exp [iS(x ÷ ay)] (12) 

according to (4) with 8 = 27rk/t0 cos 0 and a = tan 0. 
Equation (8) becomes 

Do(x, y)=  D(o e) exp [i6(x + a y ) ] - a  -2 

g~+) dx' 
x I dy' I-, sin20 Do(x',y')  . (13) 

o g 

The area of iteration is a triangle defined by the 
boundary and the two rays g ( ± ) = x + a ( y - y ' ) .  The 
integration over the lateral coordinate x' turns the 
remaining y' integration into a convolution. With the 
zeroth-order expansion D<o°)(x, y) = D~o e) exp [iS(x + 
ay)] as the starting value successive iterations 
yield 

Do(x, y)=  D~oe){exp [iS(x + ay)] 

+ ( - 2 / a 2 8  sin 20) exp (iSx) 

x I sin [aS(y -Yl)] exp (iaSyl) dyl + . . .  
o 

+ ( - 2 / a 2 8  sin 20)" exp (iSx) 

x I sin [aS(y - y , ) ]  dy, 
0 

Y. Y2 

x ~ . . .  ~ s in[aS(y2-y~)]exp( iaSy~)dy~ 
o o 

+.. .}.  (14) 

A Fourier transformation T[Do(x, y)] =/9o(X; q) 
together with the convolution theorem turns (14) into 
a geometric series which may be summed to give 

Do(q) = D(o e) exp ( - iaSy)  

T[exp (iaSy)] 
Xl +2T[sin(aSy)]/(a26 sin 20)' (15) 

after correcting for the phase transformation (4). 
Equation (15) is simply the Fourier transform of the 
Pendelliisung. Using the condition Do(y) = 0 for y < 0 
and substituting T[exp ( - e y  + ifly)] = i / (q + fl + ie) 
we find 

/)o(q) = D~oe)½i exp (-it~Sy) 

[ l + t a n h v  l - t a n h v  ] 
× 

q +cosh v/ (a  cos 0) + - ' q -  cosh v / (a  cos 0) 

(16) 

after introducing w = sinh v = ~tO sin 20/(XhX~) ~/2 
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and letting e--> 0. With Soch)= y / ( a  cos 0) and (2) we 
arrive at 

Do(So) = D~o ~) cos (So cosh v - it,) 
cosh v 

exp (-iSo sinh z,), 

(17) 

Dh(Sh) = -iD<o ~) 

x ( X h ) l / 2 s i n ( S h  cosh 7.') 
exp (-iSh sinh u). 

(18) 

Equation (18) could have been obtained directly by 
deducing and solving an analogous integral equation 
for Dh. The steps leading up to (17) and (18) show 
the feasibility of solving (8) through iteration. The 
area of validity for both (17) and (18) is restricted to 
monochromatic waves with constant amplitudes and 
wave vectors. 

iteration of (8) yields 

D~o ~ [ 
Do(so, Sh) = si---~ [ 8(Sh) exp (2"n'ik AOsh sin 20) 

-1  - 1  SoSh 
+ So+. • .+ +. • • 

n!(n--1)!  

xexp ( -21rik  AOsh sin 20), (19) 

where both D (e) and AO have their 'local' values at 
So=Sh =0. Using the relationship zOJ.(z) /Oz= 
z J . _ , ( z ) -  uJ~(z) for Bessel functions of integer order 
v, (19) and (2) give 

] - 

Do(so, s h ) -  a sT-ran 2 0 \ Sh/ 

X exp (-27rik AOSh sin 2 0) (20) 

-iO(o e, (Xh~ 1/2 [2(SoSh)'/2 ] 
Dh(S°' Sh) = a sin 20 \ X J  Jo 

(b) Wave-front-modulated Laue case 

Writing D~o e) = D~oe)(ro, rh) in order to allow for non- 
constant wave fronts we now discuss the correspond- 
ing crystal fields. Although variations of the type 
D~e)oz exp (CSh), with c generally complex, easily may 
be incorporated in (12), (17) and (18), we will work 
out an alternative method. The simplest kind of wave- 
front modulation occurs when a cut-off is imposed 
on the width of the X-ray bundle by means of a slit 
system. Diffraction effects caused by the slit edges 
themselves will not be treated here. Another type of 
deviation from the plane-wave case is met with when 
the direction of ko is not constant. This may happen 
for instance when a point source emitting spherical 
waves is located sufficiently close to the crystal. 
However, constructive interference for the diffracted 
wave requires that the corresponding variation in A0 
must be of small order. This ensures that the slight 
rotation of the coordinate system of Fig. 1 may be 
ignored for most practical crystal dimensions. 

The solutions (17) and (18) will be found to be 
valid for shallow depths y when the wave-front width 
exceeds the slit width 2d. Decreasing d will finally 
lead to the following. (i) A replacement of the 
'triangular' area of integration in Fig. 1 with the 
cross-hatched area shown in Fig. 2. This follows 
immediately from a consideration of the lower 
integration limits in the two integrals leading from 
(6), (7) to (8). (ii) Introduction of transverse Fourier 
components for the wave vector. It is convenient to 
discuss these effects according to whether the front 
width is much smaller than, or of the same order as, 
the extinction length. When d <  IRe (rh)l we may put 
the incoming wave directly equal to Dtoe)6(sl) with 
s± = Sh sin 20. The iteration area takes the form of a 
parallelogram since ro=rh =0. A straight-forward 

× exp (-2~rik AOsh sin 20) (21) 

when excluding the exciting wave. The agreement 
between the fringe pattern (20), (21) and the 
'spherical-wave' theory of Kato (1974) is due to the 
small angle of acceptance for the incoming wave 
o r - equ iva l en t l y - t he  small width of the diffraction 
curve for a perfect crystal. The above derivation in- 
volves only a simple iteration (19) of (8) and is for 
that reason considerably simpler than the Riemann 
function method. 

The d ~> IRe (rh)l case may be solved by rewriting 
(19) for a general wave location s~, and integrating 
out the corresponding lateral coordinate x'. It is con- 
venient to substitute u = ( x - x ' ) / a y  and express the 
result in terms of Sh defined as in (18). We find, 
in agreement with calculations (see for instance 
Authier & Simon, 1968) based on formulating partial 

O 

P 

Fig. 2. Effect of limiting the width of the incoming wave front 
(cross-hatched region). The parallelogram defined by O and P' 
illustrates the d ,~ ]Re (zh)[ case. 
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differential equations for the field, 

I, 

, I Dh ( Sh ; ~ ,  f 2) = -~ Sh -~g D¢oe)( u ) 
f2 

x Jo[Sh(l - u2) ~/2] exp [ -  i~(u)]  du. 

(22) 

Here f2 = (x - d) /ay ,  f~ = (x + d)/o~y, and the origin is 
located in the middle of the slit. When Ix± all-> ay 
the integration limits reach their maximal values f,.2 = 
±1. The phase is given by 

• ( u ) = S h w ( l ± u ) ,  (23) 

where in the most general case w itself may be a 
function of u, and the upper sign is to be used for 
Laue diffraction. The lower sign will be discussed 
later. 

The ideal case of a semi-infinite incoming 'plane' 
wave with a constant amplitude is shown schemati- 
cally in Fig. 3(a). Such a wave form is useful as a 
first step in understanding the effect of illuminating 
the crystal with non-planar waves. In the region to 
the right of the line A P  both the diffracted and the 
transmitted field must vanish, and the usual Pendel- 
16sung has to be valid to the left of AP'.  This follows 
from the derivation of (8) o r - a l t e r n a t i v e l y - a  con- 
sideration of those waves that are able to reach the 
point in question after an arbitrary number of scatter- 
ing events (Kato, 1974). The field in the half-shadow 
region PAP'  has to be continuous across A P  and 
AP'.  Choosing A as origin for x allows us to put 
f = f m = x / a y  and f 2 = - I  in (22). The resulting 
integral is tabulated (Gradshteyn & Ryzhik, 1980) for 
f = 0. Expressing the Bessel function in terms of u by 
using binomial expansions we get 

Dh(Sh ; f ) = 2 D ( o e ) (  Xh~ '/2 

f 

, = o  , = o  
o 

(24) 
for AO = 0. Instead of performing this double summa- 
tion diagonally we sum each 'column' separately and 
obtain an infinite series of Bessel functions of order 
n, i.e. 

z \X~;I 

,,=o n!(2n + l)J 

(25) 

after integration. It turns out that only the first few 

orders of n give a significant contribution to the 
amplitude. In the region to the right of A, f_< 0 and 
equation (25), which may be looked upon as a 'gen- 
eralized' pendulum solution, is therefore automati- 
cally valid for the whole half-shadow area. Continuity 
of the field is ensured since it can readily be shown 
that the sum over n will always reduce to an expansion 
of +sin Sh when f = + l . 0 .  This will exactly com- 
pensate for the sinusoidal oscillation along the ray 
A P ( x = - a y )  while doubling its amplitude along 
AP'  (x = ay). A numerical evaluation of I(Sh ; f ) =  
]Dh(Sh;f)] 2 is shown in Fig. 3(a) and verifies this 
conclusion. It also serves to illustrate that the strength 
of the Pendellfsung has fallen to exactly 50% of its 
normal value when x = 0. Exhibited in Fig. 3(a) is an 
additional lateral oscillation. It is important to note 
that this effect is due only to the limitation of the 
wave-front width. Fig. 3(b) displays the fringe pattern 
predicted by (25) when using two slit edges. Because 

A 

J 
P' ~~i~ii j~li~ i I 

(a) 

(b) 
Fig. 3. Symmetrical Laue diffraction (A0 = 0). (a) Boundary condi- 

tions approximated by semi-infinite 'plane' wave with cut-off at 
A. The pendulum solution to the left goes continuously into the 
shadow field along AP'  and vanishes completely at AP. The field 
is generally non-zero inside the whole area P ' A P  but is not 
visible near A P  for technical reasons. (b) Two Laue shadow 
fields (to the left and right) and their superposition (lower middle 
region) excited by a rectangular wave-front shape. (See text.) 
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of the definition of the paramete r /  the field structure 
in Fig. 3(a) will be symmetrically present at both sides 
of the incoming wave. Near the boundary it is always 
possible to have f~,2 = +1, and a conventional pen- 
dulum solution field will therefore be set up there, as 
shown in the upper middle region of Fig. 3(b). If we 
evaluate f~ and f2 in (22) for the area below this region 
we find that we have to add together two equations 
of the type (25), each with its own value for f The 
oscillatory structure that arises from this superposi- 
tion is seen to have a hyperbolical shape. The distance 
between the top point of the hyperbolical pattern and 
the boundary decreases when d goes towards zero, 
leading to a gradual obliteration of the shadow field 
to the left and right and the pendulum solution in 
the middle. Using (25) it is thus possible to give a 
description of the intensity fringes irrespectively of 
whether d>lRe(', 'h)l,d~--lRe('rh)[ or d <lRe(zh)l .  
This is in strong contrast to (21) which ceases to be 
valid for wide wave fronts. The validity of Fig. 3(b) 
is based on the assumption of a rectangular shape 
for the wave front. Such a profile leads to difficulties 
when attempting to solve (2), (3) numerically (Authier, 
Malgrange & Tournarie, 1968). When intercepting a 
plane incoming wave with the aid of a slit, Fresnel 
effects will cause the boundary conditions for the 
crystal field {Do[ro(Sh), Sh] in (8)} to depend also on 
the distance between the crystal and the slit. Although 
exhibiting a somewhat irregular shape, the calculated 
intensity distribution of Authier et al. (1968) has been 
interpreted as a kind of angular amplification of the 
X-ray field by the crystal. 

Since Dh given by (25) is continuous across the 
lines A P  and AP'  in Fig. 3(a) both field and intensity 
will be continuous at the various border lines of Fig. 
3(b). The only effect of the assumed vertical flanks 
of the incoming wave is to make the gradient of the 
field discontinuous. These discontinuities will be of 
no concern here. Equations (2), (3) and (8) will 
respond correctly to field variations that occur over 
lateral distances comparable in scale to the extinction 
length. 

(c) Wave-front modulated Bragg case 

A narrow-wave Bragg field that is analogous to 
(20), (21) was, to the author's knowledge, first derived 
by Uragami (1969). Starting with (8) we will now 
obtain the field expressions with the help of the iter- 
ation procedure used in deriving (20), (21). In addi- 
tion, we will calculate the field excited inside the 
crystal by a plane wave, and the effect of limiting the 
width will thereafter be considered (semi-infinite 
case). As follows from the derivation of (8) the iter- 
ations have to take place over the cross-hatched area 
of Fig. 4 when the incoming ray bundle is infinitely 
narrow. The diffracted-wave amplitude is zero along 
A P  while the transmitted amplitude vanishes at the 

crystal surface except the entrance point A. Waves 
that are re-scattered above the iteration area are 
automatically included. Substituting ro = Sh and rh = 0 
in (8) gives immediately upon iteration 

o(°e) [ 
Do(so, Sh) = sin 20 6(Sh) exp (27riksh AO sin 20) 

-1  +7(So-Sh)+... 

n ! ( n - l ) !  

n , ,-I n / X(SoSh n - t )  -k- -- ShS o • . .  J 
× exp (-2rrik  AO Sh sin 20), (26) 

when using the coordinate system of Fig. 4. Excluding 
the exciting wave itself we get 

t(o e) [(S_.~o) l/2 (S-~h)'/2 ] 
Do(so, Sh) -- a sin 20 

X j ,  [ 2(soSh) '/z] exp (-27rik AO sh sin 20), 

(27) 

D h ( S o, S h ) - a ~m 2 0 \ --~ / t 

+ J2 
× exp (-2~rik aOSh sin 20), (28) 

where the latter expression is calculated by means of 
(6). 

In order to calculate the field arising from an exten- 
ded wave front we define 

x = -(So + Sh) COS O, (29) 

y = (So-- Sh) sin 0 (30) 

/ / p 
/ / 

/ /  / 

d 
Fig. 4. The cross-hatched area shows that part of the crystal which 

is capable of contributing directly to the field at P' when excited 
by a narrow wave at A. Re-scattered waves within the non- 
hatched triangle ABN must eventually enter the iteration area 
in order to reach P' and are therefore also included. The origin 
is located at A and the unit vectors So and sh are parallel to AN 
and NB, respectively. 
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and allow both the amplitude and the phase to vary 
along the surface. In contrast to the narrow-front case 
the entire part of the crystal lying to the left of the 
broken line MP' is able to propagate and rescatter 
waves towards P ' - g r a n t e d  a wide enough front 
width. In practice, howevever, contributions from 
layers lying deeper than the extinction distance will 
vanish. From (28) 

/2 
=--iSh(Xh~l/2 f 

Dh(Sh;fl 'f2) 2 \X#]  D(°e)(u) 

f| 
u - 1  

X Jo[Sh(U 2 -  1)'/2]+ - 
u+i 

I)1/2]~ exp [i~(u)] du, x J2[Sh(U 2- 
.i 

(31) 

with integration limits determined by the slit system 
and u - - ( x ' - x ) c e / y .  Since Sh is proportional to the 
distance from the surface along the reflected ray and 
the Bragg and Laue angles are complementary, the 
definitions of • and Sh may be kept unmodified when 
using the lower sign in (23). For a plane wave we 
substitute the valuesf~ -- 1 and f2 = oo. Using tabulated 
values for the integrals we arrive at 

= exp [Sh(iw-- (1 -- wE) 1/2] 

X[W-- i(1 -- wE) ~/2] (32) 

whose value at the surface (Sh = 0) is in agreement 
with the expression given by Uragami (1969) when 
choosing the physically correct sign for the square 
roots inside the parentheses. Another special case of 
(31) is represented by a cut-off in the width of a plane 
wave. In contrast to the analogous Laue case we want 
to find the field at the surface. The amplitude distribu- 
tion across the reflected beam along the x direction 
may be obtained by using u ~> 1 in (31). The necessary 
integrals are tabulated (Gradshteyn & Ryzhik, 1980), 
giving 

( ) (  )] X 2 J2,+l X X 
,=o a c o s 0  - J l  a c o s 0  

(33) 

for a simple slit edge located at A (Fig. 4). The origin 
for x is A. The presence of straight-edge diffraction 
in air is neglected and AO = 0. When x >> IRe (~'h)l the 
first term inside the parentheses approaches unity 
while the contribution from J~ can be neglected. There 
is agreement between (32) and (33) since w = 0 in the 
middle of the Bragg total-reflection range and Sh is 
defined to be zero at and above the crystal surface. 
The shadow field (33) will be of importance when x 

is of the same order as the extinction length. In 
practice, only the first few orders n will contribute - as 
in the transmission case. 

4. Non-zero kernel 

Excluding the trivial case of constant displacements 
we now allow the kernel (9) to be a function of So 
and Sh. Without loss of generality we redefine the 
Laue angle so that u(0, 0) = 0. Alternatively, the crystal 
planes may be made to curve in such a manner that 
the atoms near the origin remain unshifted. The dis- 
placement field is split into three parts as follows; 

U ( S 0 ,  Sh) = U 0 ( S 0 )  -1LUh(Sh) " ~ U 0 h ( S 0 ,  Sh). ( 3 4 )  

Such a division is useful since expanding U(So, Sh) 
around u(0, 0) in terms of So and Sh will, for instance, 
cause U0h to take care of the cross terms between the 
partial derivatives. As a first step we discuss in this 
paper the modifications of the integral equation 
methods when Uo ~ 0 and Uh ~ 0. 

According to (9) any contribution from u0(so) will 
be subtracted away. Within the area of validity for 
the Takagi equations the intensity pattern will there- 
fore not be influenced at all by this deformation class. 
One of the earliest discussions of phenomena of this 
kind was given by Penning & Polder (1961). In order 
to illustrate the effect for the Laue case, the atomic 
planes of the perfect crystal in Fig. 5 are shown before 
(unbroken lines) and after (broken lines) the action 
of a displacement huo oc S3o. In the unperturbed lattice 
an arbitrary atom located at P will be hit by both 
multiply scattered Do and Dh waves. In a strained 
crystal, however, both lattice parameter d and angle 
of entrance 0 will vary along an arbitrary ray path 
because of the non-parallel planes. The conditions 
for having constructive interference, as expressed 
through Bragg's law, are therefore no longer fulfilled. 
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Fig. 5. Crystal planes shown before (unbroken lines) and after 
(broken lines) the action of the displacement field huoc sg. (See 
text.) 
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One exception, however, must be wave propagation 
in the So and sh directions. The atom originally located 
at P has Q as its new position and the change in d 
when going from Q to R is given by (Fig. 5) 

A d . . 1  0u0l aso, (35) 
20So 

where Aso is the distance QR. This increment is 
exactly compensated by the smaller angle of entrance 

AO~----l (OlU°[ Aso)/(d/tan 0), (36) 
2 \  OSo / 

giving aO = - A d / d  tan 0, which is in agreement with 
a differentiation of Bragg's law. Multiple scattering 
and photoelectric absorption will therefore take place 
as in the unstrained crystal, leaving amplitude, phase 
and intensity as before. This conclusion remains valid 
for all incoming 'plane'-wave widths. In contrast, the 
influence of a displacement field Uh(Sh) on amplitude 
and intensity will vanish only for an extremely narrow 
wave front, and new phases will be introduced even 
in this case. An impression of this situation may be 
obtained by reversing the roles played by So and Sh 
in Fig. 5. When the kernel (9) takes the form 

K(Sh; S'h)=exp{27rih[Uh(S'h)--Uh(Sh)]}, (37) 

the earlier solutions (20) and (21) have to be multi- 
plied by exp [--27rihUh(Sh)] in order to be valid. This 
follows immediately from an iteration of (8) when 
using (37) together with a 8 function for the incoming 
rays. Equations (22), (23) are valid for extended wave 
fronts when redefining • in (23) to including this 
additional phase. 

One of the simplest classes of non-crystallographic 
lattices is represented by planes fanning out from a 
common (fictitious) point. Such a structure may arise 
locally for a slowly changing curvature resulting, for 
instance, from elastic bending. We assume that the 
convergence of the planes is perfect, and that the 
convergence point is located at a distance R above 
the crystal. The X-rays enter the crystal from above 
and a plane surface is assumed. In the Laue case a 
fan-shaped lattice system may be described by means 
of the (horizontal) displacement vector Ux = u.  x / Ix l -  
xy/R.  Therefore, the phase correction according to 
(10), (11) must take the form -iTrs2h sin 20/Rd. When 
including this in (23) we get 

q~'(u) = q) (u)+~R [(YcosSin 0 8)2(1 -u2) 

+2xy(1 +u)s in  0] .  (38) 

As R ~ oo the orientation of the planes will become 
increasingly parallel and the intensity pattern will 
pass continuously into the fringe system of a perfect 
crystal. For small depths and a finite R we may neglect 

the second-order term in (38) and, using A'O= 
AO + x / R  instead of AO, one finds that @' will be of 
the same form as ~. The meaning of this is that local 
pendulum solutions (18) with extinction distances 
depending on the lateral coordinate x and the degree 
of fanning of the planes are set up. @'(u) will oscillate 
more rapidly than the Bessel function at depths y ~, 
RA/(IRe ('/'h)l s in2 8) and will have an extreme value 
at u = (x + R AO)/ ay. The integral (22) can therefore 
be evaluated by the method of stationary phase when 
Ix + R AO[ <- ay. We get 

i/2 ] 
_ ( A R )  . r2, , 

Dh(So'Sh)~X- a J°LatS°S")'/2 (39) 

when locating the origin at the point where AO = 0 
and excluding the phase. The corresponding intensity 
distribution has therefore an angular behaviour which 
is identical to the fringe system excited by a point 
source on the surface of a perfect crystal. 

Numerical solutions capable of dealing with both 
the Uh and Uoh terms may be obtained in two prin- 
cipally different ways. (i) A direct numerical iteration 
of (8) is able to give simultaneously better values for 
every point lying inside the iteration area. The quality 
of a solution of this kind will decrease when increas- 
ing the distance from the boundary. (ii) Another 
method consists of the phase change (4) with success- 
ive numerical integrations of (6) and (7) along so and 
Sh. The effect of a deviation A0 from the Bragg condi- 
tion is now economically expressed through the boun- 
dary conditions. The two (symmetrical) equations 
may be rewritten as 

--Ah, 1 LD~,,J 
o /~ h 

[ (D,,,_,.,, + A,,,_,..D,,,_,.,,) ] (40) 
=- h h 0 L(D,.-, . .+,+A,.-, . .+,Dr.-, . .÷,)J 

when the integration length A is small. The upper 
bound for a is to be judged from IRe(rh)] or the 
smallest distance over which significant changes in 
hu occur, and A~,, = -izrA exp (2rtihu)/27"h. The sub- 
scripts m and n are proportional to depth and lateral 
distance, respectively. The product mA is equal to 
the distance from the surface along the incoming ray 
to just that mesh point (m, n), where Do = D ° ,  and 

= Din,. As an example the calculated intensity Oh h 
distribution for a bent Si crystal is reproduced in Fig. 
6. These simulations have been performed for the 
symmetrical Laue case with an incoming plane wave. 
Other jaarameters include, R =20 m, 0 = 10.6 °, A = 
0.709 A, and IRe (rh)l = 36 I~m. The fringe system is 
in agreement with the behaviour to be expected from 
the discussion of the Uo and Uh terms for small depths. 
Not shown in Fig. 6 is the complicated structure in 
the medium y region and the simpler hyperbolical 
pattern (39) at larger y. 
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5. Concluding remarks 

The systematic application of  integral-equation 
theory has permitted straight-forward derivations of  
analytical expressions for the field generated by two 
coupled waves. Furthermore,  the method has the 
advantage of  being easily accessible to a physical 
interpretation. When an X-ray wave is transmitted 
over a small distance inside a crystal the probabili ty 
for a single scattering event is much higher than the 
probabili ty for double scattering, triple scattering and 
so on. The basis for the utility of the numerical method 
(40) is therefore that the successive layers in the crystal 
are chosen so close together that the probabil i ty for 
multiple reflection can be neglected. Since being over 
Sh and So, however, the two integrals must be propor- 
tional to the probabili ty for scattering and re-scat- 
tering, respectively. This must mean that a general 
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Fig. 6. The intensity of the transmitted wave as calculated from 
the numerical solution (40) of two coupled integral equations 
for the field. Fanning planes, not shown, converge above the 
crystal with R = 20 m. The arrows point in the direction of the 
incoming plane wave. (See text).) 

term of  nth order in any of  the analytical iteration 
procedures has to be identical with the contribution 
from waves that are scattered and re-scattered n times. 
So far, the influence of  average absorption, asym- 
metrical reflections, and coupling of  three or more 
waves has been neglected. In many circumstances, 
for instance spectrometry, these factors are either 
trivial or unimportant .  Complicated phenomena such 
as, for instance, diffraction focusing require that 
effects due to crystal shape and refraction are con- 
sidered for the various classes of incoming wave 
packets. 
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Abstract 

In close-packed ordered alloys of  composit ion A B ,  
the lattice constant a and all interatomic distances 
are determined to a good approximation by the quan- 
tity (RA + nRa). This observation, the Paul ing-Simon 
law [Pauling (1957). Acta Cryst. 10, 374-375; Simon 

0108-7673/84/030291-06501.50 

(1983). Angew. Chem. 22, 95-113], is analogous to 
Vegard's law [Pearson (1972). The Chemistry and 
Physics o f  Metals and Alloys. New York: Wiley] for 
random alloys. No exact proof  is possible but here a 
theoretical discussion is given using the spirit of  
Froyen & Herring's 'proof '  of  Vegard's law [Froyen 
& Herring (1981). J. Appl. Phys. 52, 7165-7167]. The 
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